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Google App Engine

• Platform for building scalable web applications

• Built on Google infrastructure

• Pay for what you use

• Apps, instance hours, storage, bandwidth, service calls

• Free to start!

• Launched with Python 2.5 exclusively in 2008; then 
Java, Go, Python 2.7
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Google App Engine

• Easy development

• Easy deployment

• No servers to manage, no OS to update;
App Engine does this for you

• Based on standard technologies:
Python 2.7, WSGI
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Agenda

• The App Engine datastore

•Data modeling

•Queries

• Transactions

• Automatic caching
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Agenda

• Batching

• Asynchronous calling

• “Tasklets”
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The App Engine 
Datastore

Tuesday, October 9, 12



The Datastore

• scalable

• queryable

• transactional
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The Datastore

• entity

• key

• kind, ID

• properties

• name, typed value
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The Datastore
player = ...

player.name = ‘druidjane’
player.level = 7

now = datetime.datetime.now()
player.create_date = now

player.put()
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The Datastore

• “schemaless” object storage

p1 = ...
p1.level = 7
p1.put()

p2 = ...
p2.level = ‘warrior’
p2.put()

p3 = ...
p3.put()
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ndb

• Data modeling library, runs entirely in 
your application code

• ext.db launched with AE in 2008

• ndb started by Guido van Rossum 
(creator of Python, App Engine dev)

• GA in version 1.6.4, March 2012

• requires Python 2.7
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ndb
from google.appengine.ext import ndb

class Player(ndb.Model):
  name = ndb.StringProperty()
  level = ndb.IntegerProperty()
  create_date = ndb.DateTimeProperty()

p1 = Player()
p1.level = 7
p1.put()

p2 = Player()
p2.level = ‘warrior’  # BadValueError
p2.put()
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ndb
p3 = Player(name=‘druidjane’,
            level=7,
            create_date=now)
# ...

  Key:

  name:           ‘druidjane’
  level:            7
  create_date: 2012-10-09
                     10:20:00 am PDT

Kind: Player
ID: ___
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ndb
p3 = Player(name=‘druidjane’,
            level=7,
            create_date=now)
p3key = p3.put()

  Key:

  name:           ‘druidjane’
  level:            7
  create_date: 2012-10-09
                     10:20:00 am PDT

Kind: Player
ID: 324
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ndb
player_key = ndb.Key(Player, 324)
player = player_key.get()

if player.level > 5:
  # ...

  Key:

  name:           ‘druidjane’
  level:            7
  create_date: 2012-10-09
                     10:20:00 am PDT

Kind: Player
ID: 324
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Data Modeling
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Data Modeling

• Declare entity structure

• Validate property values (types, ranges)

• Python-like class/object interface
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Data Modeling

• Subclass ndb.Model

• Name of subclass is entity Kind (Player)

• Use class attributes to declare property names, 
types, and parameters

• name = ndb.StringProperty()

• create_datetime = 
ndb.DateTimeProperty(auto_now_add=True)
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Type Property
int, long IntegerProperty

float FloatProperty
bool BooleanProperty

str, unicode StringProperty
datetime DateTimeProperty

date DateProperty
time TimeProperty

ndb.GeoPt GeoPtProperty
users.User UserProperty

ndb.Key KeyProperty
None
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Data Modeling

• Declaration can specify parameters

• name = ndb.StringProperty(required=True)

• level = ndb.IntegerProperty(default=1)

• charclass = ndb.StringProperty(
  choices=[‘mage’, ‘thief’, ‘warrior’])

• indexed=False; repeated=True; 
validator=some_function
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Data Modeling

• JsonProperty(compressed=True)

• PickleProperty(compressed=True)

• GenericProperty()

• ComputedProperty(func)

• last_name = ndb.StringProperty(required=True)
last_name_lc = ndb.ComputedProperty(
    lambda self: self.last_name.lower())
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Data Modeling

• StructuredProperty(InnerModelClass)

• Uses an ndb.Model subclass to model the property 
value

• In code, the value is an instance of the model class

• In the datastore, fields become properties of the 
main entity, not separate entities

• Can be queried!
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Data Modeling
class PlayerHome(ndb.Model):
  sector = ndb.IntegerProperty()
  house_num = ndb.IntegerProperty()
  roof_color = ndb.StringProperty()

class Player(ndb.Model):
  # ...
  home = ndb.StructuredProperty(PlayerHome)

p1 = Player()
p1.home = PlayerHome()
p1.home.sector = 698714526
p1.home.house_num = 123
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Queries
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Queries

• Query all entities of a Kind based on 
property values

• Filters:  level > 5

• Orders:  score, descending

• Returns full entities, partial entities 
(“projection queries”), or just keys
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Queries

• Scalable: query speed is not affected by the 
number of records in the datastore, only the 
number of results!

• All queries are pre-indexed.

• Built-in indexes

• Custom indexes

• Development server helps generate index 
configuration
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Queries

query = Player.query()

query.order(Player.level, -Player.score)

query.filter(Player.level >= 5)
query.filter(Player.charclass == ‘warrior’)

query = Player.query(Player.level >= 5)
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Queries

players = query.fetch(20)
for player in players:
  # player.name ...

keys = query.fetch(20, keys_only=True)

for player in query:
  # player.name ...

for key in query.iter(keys_only=True):
  # ...

Tuesday, October 9, 12



GQL

query = Player.gql(‘WHERE level >= 5 ’
                   ‘ORDER BY score’)

query = ndb.gql(‘SELECT Player ’
                ‘WHERE level >= 5 ’
                ‘ORDER BY score’)
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!= and IN

query = Player.query(
    Player.charclass != ‘warrior’)

query = Player.query(
    Player.charclass.IN([‘thief’, ‘mage’])

Implemented as multiple queries, with results 
deduplicated. (Beware limitations.)
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AND and OR

query = Player.query(
    ndb.AND(Player.charclass == ‘warrior’,
            Player.level >= 5))

query = Player.query(
    ndb.OR(Player.charclass == ‘thief’,
           Player.charclass == ‘mage’))

AND simply concatenates filters, as before.
OR uses multiple queries, with results 

deduplicated. (Beware limitations.)
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Projection Queries

query = Player.query()

results = query.fetch(20,
    projection=[Player.name, Player.level])
for player in results:
  # player.name ...
  # (player.score not set)

Projected property values are pulled directly from 
the index, and so must all be indexed properties.
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Cursors

• Seeking by count is slow

• A cursor remembers where a previous 
query stopped, so it can be resumed

• ... in a later request

• Paginated displays

• Batch jobs
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Cursors

• Fetch results using an iterator, with cursors 
enabled:
it = query.iter(produce_cursors=True)
for result in it: # ...

• Test whether there’s another result:
if it.has_next(): # ...
if it.probably_has_next(): # ...

• Get a cursor after fetching results:
cursor = it.cursor_after()
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Cursors

• Pass cursor to next request:
self.response.write(cursor.urlsafe())

• In next request, reconstruct the cursor value:
cursor = ndb.Cursor.from_websafe_string(
    self.request.get(‘cursor’))

• Use the cursor for the next query:
it = query.iter(start_cursor=cursor)

• It must be the same query: kind, filters, sort orders

Tuesday, October 9, 12



Cursors

• Shortcut:  fetch_page()

cursor = ndb.Cursor.from_websafe_string(
    self.request.get(‘cursor’))

(results, cursor, more) = \
    query.fetch_page(
        20, start_cursor=cursor)

if more: 
    # render “Next” link with cursor
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Transactions
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Transactions

• Extremely important subject!

• For today, just looking at the API briefly

• Concepts are similar to ext.db

• (See the book and online docs.)
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Transactions

• “Local” transactions with “strong” 
consistency

• Optimistic concurrency control

• Entity groups

• Groups defined using keys; “ancestor” paths
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Transactions

• All operations that participate in a 
transaction must be limited to entities in a 
single group

• (also: cross-group transactions)

• Decorate your functions to describe how 
they participate in transactions
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Transactions

@ndb.transactional
def IncrementScore(player_key, score_incr):
  player = ndb.get(player_key)
  player.score += score_incr
  player.put()

# ...
  for player_key in winning_team_keys:
    IncrementScore(player_key, 500)
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Transactions

@ndb.transactional
def AwardTrophies(player):
  if player.score > 500:
    trophy = Trophy(parent=player.key, ...)
    trophy.put()

@ndb.transactional
def IncrementScore(player_key, score_incr):
  player = ndb.get(player_key)
  player.score += score_incr
  AwardTrophies(player)
  player.put()
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Automatic Caching
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Automatic Caching

• Two automatic caching features

• “In-context” cache

• Memcache storage

• Same basic idea, difference in scope
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Automatic Caching

• Context cache starts empty for each request

• Minimizes datastore interactions throughout the 
request handler code

• context = ndb.get_context()
context.set_cache_policy(lambda key: True)
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Automatic Caching

• Memcache: global, distributed cache

• Outlives requests

• ndb handles serialization of model instance

• def test_memcache_ok(key):
  # ...

context = ndb.get_context()
context.set_memcache_policy(
    test_memcache_ok)
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Automatic Caching

• Can set caching policies on a per-class basis, 
overriding the global policy:

class Player(ndb.Model):
  _use_cache = True
  _use_memcache = False
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Automatic Caching

• Can even set a “datastore policy”!

class ProgressMeter(ndb.Model):
  _use_cache = True
  _use_memcache = True
  _use_datastore = False

  meter = ndb.IntegerProperty()
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Batching
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Batching

• Several services support “batch” APIs, for 
reducing the number of RPCs

• entities = ndb.get_multi(
    [key1, key2, key3])

• Explicit batching calls: the *_multi() 
methods
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Batching

• ndb batches automatically!

• Maintains batching queues for datastore, 
memcache, and even URL Fetch

• “Flushes” caches by performing batch 
operations

• Maintains consistent local view, such as via the 
in-context cache

• Only does this when it’s safe
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Batching

• App can add requests to ndb-managed 
batching queues for memcache and URL 
Fetch using methods on the Context

• App can flush explicitly:
context.flush()
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Asynchronous Calling
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Asynchronous Calling

• Some services support asynchronous calling:

• App initiates call

• Call returns a “future” object immediately; 
app code resumes, service works in 
parallel

• App calls method on “future” object to get 
results; waits for service to finish, if 
necessary, then returns results
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Asynchronous Calling

• ndb supports *_async() forms of most 
methods on Model and Query classes

• Future objects have a get_result() 
method (and other methods)
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Tasklets
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Tasklets
• A useful way to organize complex code that calls 

services

• Tasklet: application code that can be invoked like an 
asynchronous call

• Tasklet code does not execute concurrently

• Can yield to other pending tasklets when waiting 
for service calls

• ndb uses an event loop and auto-batching to drive 
tasklets to completion efficiently
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Tasklets

(See the documentation.)
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