
Data Modeling for
Google App Engine using

Python and ndb

Dan Sanderson
October 9, 2012

Tuesday, October 9, 12

Tuesday, October 9, 12

Tuesday, October 9, 12

Google App Engine

• Platform for building scalable web applications

• Built on Google infrastructure

• Pay for what you use

• Apps, instance hours, storage, bandwidth, service calls

• Free to start!

• Launched with Python 2.5 exclusively in 2008; then
Java, Go, Python 2.7

Tuesday, October 9, 12

Google App Engine

• Easy development

• Easy deployment

• No servers to manage, no OS to update;
App Engine does this for you

• Based on standard technologies:
Python 2.7, WSGI

Tuesday, October 9, 12

Agenda

• The App Engine datastore

•Data modeling

•Queries

• Transactions

• Automatic caching

Tuesday, October 9, 12

Agenda

• Batching

• Asynchronous calling

• “Tasklets”

Tuesday, October 9, 12

The App Engine
Datastore

Tuesday, October 9, 12

The Datastore

• scalable

• queryable

• transactional

Tuesday, October 9, 12

The Datastore

• entity

• key

• kind, ID

• properties

• name, typed value

Tuesday, October 9, 12

The Datastore
player = ...

player.name = ‘druidjane’
player.level = 7

now = datetime.datetime.now()
player.create_date = now

player.put()

Tuesday, October 9, 12

The Datastore

• “schemaless” object storage

p1 = ...
p1.level = 7
p1.put()

p2 = ...
p2.level = ‘warrior’
p2.put()

p3 = ...
p3.put()

Tuesday, October 9, 12

ndb

• Data modeling library, runs entirely in
your application code

• ext.db launched with AE in 2008

• ndb started by Guido van Rossum
(creator of Python, App Engine dev)

• GA in version 1.6.4, March 2012

• requires Python 2.7

Tuesday, October 9, 12

ndb
from google.appengine.ext import ndb

class Player(ndb.Model):
 name = ndb.StringProperty()
 level = ndb.IntegerProperty()
 create_date = ndb.DateTimeProperty()

p1 = Player()
p1.level = 7
p1.put()

p2 = Player()
p2.level = ‘warrior’ # BadValueError
p2.put()

Tuesday, October 9, 12

ndb
p3 = Player(name=‘druidjane’,
 level=7,
 create_date=now)
...

 Key:

 name: ‘druidjane’
 level: 7
 create_date: 2012-10-09
 10:20:00 am PDT

Kind: Player
ID: ___

Tuesday, October 9, 12

ndb
p3 = Player(name=‘druidjane’,
 level=7,
 create_date=now)
p3key = p3.put()

 Key:

 name: ‘druidjane’
 level: 7
 create_date: 2012-10-09
 10:20:00 am PDT

Kind: Player
ID: 324

Tuesday, October 9, 12

ndb
player_key = ndb.Key(Player, 324)
player = player_key.get()

if player.level > 5:
 # ...

 Key:

 name: ‘druidjane’
 level: 7
 create_date: 2012-10-09
 10:20:00 am PDT

Kind: Player
ID: 324

Tuesday, October 9, 12

Data Modeling

Tuesday, October 9, 12

Data Modeling

• Declare entity structure

• Validate property values (types, ranges)

• Python-like class/object interface

Tuesday, October 9, 12

Data Modeling

• Subclass ndb.Model

• Name of subclass is entity Kind (Player)

• Use class attributes to declare property names,
types, and parameters

• name = ndb.StringProperty()

• create_datetime =
ndb.DateTimeProperty(auto_now_add=True)

Tuesday, October 9, 12

Type Property
int, long IntegerProperty

float FloatProperty
bool BooleanProperty

str, unicode StringProperty
datetime DateTimeProperty

date DateProperty
time TimeProperty

ndb.GeoPt GeoPtProperty
users.User UserProperty

ndb.Key KeyProperty
None

Tuesday, October 9, 12

Data Modeling

• Declaration can specify parameters

• name = ndb.StringProperty(required=True)

• level = ndb.IntegerProperty(default=1)

• charclass = ndb.StringProperty(
 choices=[‘mage’, ‘thief’, ‘warrior’])

• indexed=False; repeated=True;
validator=some_function

Tuesday, October 9, 12

Data Modeling

• JsonProperty(compressed=True)

• PickleProperty(compressed=True)

• GenericProperty()

• ComputedProperty(func)

• last_name = ndb.StringProperty(required=True)
last_name_lc = ndb.ComputedProperty(
 lambda self: self.last_name.lower())

Tuesday, October 9, 12

Data Modeling

• StructuredProperty(InnerModelClass)

• Uses an ndb.Model subclass to model the property
value

• In code, the value is an instance of the model class

• In the datastore, fields become properties of the
main entity, not separate entities

• Can be queried!

Tuesday, October 9, 12

Data Modeling
class PlayerHome(ndb.Model):
 sector = ndb.IntegerProperty()
 house_num = ndb.IntegerProperty()
 roof_color = ndb.StringProperty()

class Player(ndb.Model):
 # ...
 home = ndb.StructuredProperty(PlayerHome)

p1 = Player()
p1.home = PlayerHome()
p1.home.sector = 698714526
p1.home.house_num = 123

Tuesday, October 9, 12

Queries

Tuesday, October 9, 12

Queries

• Query all entities of a Kind based on
property values

• Filters: level > 5

• Orders: score, descending

• Returns full entities, partial entities
(“projection queries”), or just keys

Tuesday, October 9, 12

Queries

• Scalable: query speed is not affected by the
number of records in the datastore, only the
number of results!

• All queries are pre-indexed.

• Built-in indexes

• Custom indexes

• Development server helps generate index
configuration

Tuesday, October 9, 12

Queries

query = Player.query()

query.order(Player.level, -Player.score)

query.filter(Player.level >= 5)
query.filter(Player.charclass == ‘warrior’)

query = Player.query(Player.level >= 5)

Tuesday, October 9, 12

Queries

players = query.fetch(20)
for player in players:
 # player.name ...

keys = query.fetch(20, keys_only=True)

for player in query:
 # player.name ...

for key in query.iter(keys_only=True):
 # ...

Tuesday, October 9, 12

GQL

query = Player.gql(‘WHERE level >= 5 ’
 ‘ORDER BY score’)

query = ndb.gql(‘SELECT Player ’
 ‘WHERE level >= 5 ’
 ‘ORDER BY score’)

Tuesday, October 9, 12

!= and IN

query = Player.query(
 Player.charclass != ‘warrior’)

query = Player.query(
 Player.charclass.IN([‘thief’, ‘mage’])

Implemented as multiple queries, with results
deduplicated. (Beware limitations.)

Tuesday, October 9, 12

AND and OR

query = Player.query(
 ndb.AND(Player.charclass == ‘warrior’,
 Player.level >= 5))

query = Player.query(
 ndb.OR(Player.charclass == ‘thief’,
 Player.charclass == ‘mage’))

AND simply concatenates filters, as before.
OR uses multiple queries, with results

deduplicated. (Beware limitations.)

Tuesday, October 9, 12

Projection Queries

query = Player.query()

results = query.fetch(20,
 projection=[Player.name, Player.level])
for player in results:
 # player.name ...
 # (player.score not set)

Projected property values are pulled directly from
the index, and so must all be indexed properties.

Tuesday, October 9, 12

Cursors

• Seeking by count is slow

• A cursor remembers where a previous
query stopped, so it can be resumed

• ... in a later request

• Paginated displays

• Batch jobs

Tuesday, October 9, 12

Cursors

• Fetch results using an iterator, with cursors
enabled:
it = query.iter(produce_cursors=True)
for result in it: # ...

• Test whether there’s another result:
if it.has_next(): # ...
if it.probably_has_next(): # ...

• Get a cursor after fetching results:
cursor = it.cursor_after()

Tuesday, October 9, 12

Cursors

• Pass cursor to next request:
self.response.write(cursor.urlsafe())

• In next request, reconstruct the cursor value:
cursor = ndb.Cursor.from_websafe_string(
 self.request.get(‘cursor’))

• Use the cursor for the next query:
it = query.iter(start_cursor=cursor)

• It must be the same query: kind, filters, sort orders

Tuesday, October 9, 12

Cursors

• Shortcut: fetch_page()

cursor = ndb.Cursor.from_websafe_string(
 self.request.get(‘cursor’))

(results, cursor, more) = \
 query.fetch_page(
 20, start_cursor=cursor)

if more:
 # render “Next” link with cursor

Tuesday, October 9, 12

Transactions

Tuesday, October 9, 12

Transactions

• Extremely important subject!

• For today, just looking at the API briefly

• Concepts are similar to ext.db

• (See the book and online docs.)

Tuesday, October 9, 12

Transactions

• “Local” transactions with “strong”
consistency

• Optimistic concurrency control

• Entity groups

• Groups defined using keys; “ancestor” paths

Tuesday, October 9, 12

Transactions

• All operations that participate in a
transaction must be limited to entities in a
single group

• (also: cross-group transactions)

• Decorate your functions to describe how
they participate in transactions

Tuesday, October 9, 12

Transactions

@ndb.transactional
def IncrementScore(player_key, score_incr):
 player = ndb.get(player_key)
 player.score += score_incr
 player.put()

...
 for player_key in winning_team_keys:
 IncrementScore(player_key, 500)

Tuesday, October 9, 12

Transactions

@ndb.transactional
def AwardTrophies(player):
 if player.score > 500:
 trophy = Trophy(parent=player.key, ...)
 trophy.put()

@ndb.transactional
def IncrementScore(player_key, score_incr):
 player = ndb.get(player_key)
 player.score += score_incr
 AwardTrophies(player)
 player.put()

Tuesday, October 9, 12

Automatic Caching

Tuesday, October 9, 12

Automatic Caching

• Two automatic caching features

• “In-context” cache

• Memcache storage

• Same basic idea, difference in scope

Tuesday, October 9, 12

Automatic Caching

• Context cache starts empty for each request

• Minimizes datastore interactions throughout the
request handler code

• context = ndb.get_context()
context.set_cache_policy(lambda key: True)

Tuesday, October 9, 12

Automatic Caching

• Memcache: global, distributed cache

• Outlives requests

• ndb handles serialization of model instance

• def test_memcache_ok(key):
 # ...

context = ndb.get_context()
context.set_memcache_policy(
 test_memcache_ok)

Tuesday, October 9, 12

Automatic Caching

• Can set caching policies on a per-class basis,
overriding the global policy:

class Player(ndb.Model):
 _use_cache = True
 _use_memcache = False

Tuesday, October 9, 12

Automatic Caching

• Can even set a “datastore policy”!

class ProgressMeter(ndb.Model):
 _use_cache = True
 _use_memcache = True
 _use_datastore = False

 meter = ndb.IntegerProperty()

Tuesday, October 9, 12

Batching

Tuesday, October 9, 12

Batching

• Several services support “batch” APIs, for
reducing the number of RPCs

• entities = ndb.get_multi(
 [key1, key2, key3])

• Explicit batching calls: the *_multi()
methods

Tuesday, October 9, 12

Batching

• ndb batches automatically!

• Maintains batching queues for datastore,
memcache, and even URL Fetch

• “Flushes” caches by performing batch
operations

• Maintains consistent local view, such as via the
in-context cache

• Only does this when it’s safe

Tuesday, October 9, 12

Batching

• App can add requests to ndb-managed
batching queues for memcache and URL
Fetch using methods on the Context

• App can flush explicitly:
context.flush()

Tuesday, October 9, 12

Asynchronous Calling

Tuesday, October 9, 12

Asynchronous Calling

• Some services support asynchronous calling:

• App initiates call

• Call returns a “future” object immediately;
app code resumes, service works in
parallel

• App calls method on “future” object to get
results; waits for service to finish, if
necessary, then returns results

Tuesday, October 9, 12

Asynchronous Calling

• ndb supports *_async() forms of most
methods on Model and Query classes

• Future objects have a get_result()
method (and other methods)

Tuesday, October 9, 12

Tasklets

Tuesday, October 9, 12

Tasklets
• A useful way to organize complex code that calls

services

• Tasklet: application code that can be invoked like an
asynchronous call

• Tasklet code does not execute concurrently

• Can yield to other pending tasklets when waiting
for service calls

• ndb uses an event loop and auto-batching to drive
tasklets to completion efficiently

Tuesday, October 9, 12

Tasklets

(See the documentation.)

Tuesday, October 9, 12

developers.google.com/
appengine

appengine.google.com

ae-book.appspot.com

Programming Google App
Engine, 2nd ed.
October 2012

Dan Sanderson
profiles.google.com/
dan.sanderson

Tuesday, October 9, 12

http://developers.google.com/appengine
http://developers.google.com/appengine
http://developers.google.com/appengine
http://developers.google.com/appengine

