Google

D
evelopers

O

O

Building developers.google.com
on Google App Engine

D
Developer Programs Engineer I ‘
y 16, 13

Build & Run Scalable Web Apps
on Google'’s Infrastruciure

Programming

Google App

(\ Google
Developers

O’

Dan Sanderson

J— e

O

Thursday, May 16, 13

Google Developers: developers.google.com

« Content Mmanagement system

(‘ Google
« Events calendar DEVEIOperS

» Developer showcase

* Google Developer Groups
» Google Developers Live

» Google I/0

O

Thursday, May 16, 13

This Talk

» Design of a piece of the content management system

- What we actually use

- Focus on the App Engine-y bits
» Tools and implementation

- A modern implementation, in Python 2.7
- Using modern features of App Engine

- Discrepancies and alternatives

O

Thursday, May 16, 13

Requirements

Content managed separately from other parts of the site

File-based CMS

- content developed “offline,” published with a client tool

- developer publishes a set of changes at a time, over many files

Access controls for publishing

Fast file serving

Many content developers working concurrently

O

Thursday, May 16, 13

sday, May 16, 13

publish <dir-or-file> [<dir-or-file>...]

client server

O

Thursday, May 16, 13

O

client

server
upload
upload
upload
v

Thursday, May 16, 13

O

Upload:

URL path
content type
data

client

server
load
Hpoa » Update
upload
»| Update
upload
»| Update
\/

Thursday, May 16, 13

O

client

server
upload
upload
upload
v

Thursday, May 16, 13

client server

start
>
load
uploa >
load
uploa >
load
uploa >
\4 \4

O

Thursday, May 16, 13

client server

"This is what | have..." start > Query, Delete,
Delete, Delete...

load
Start: — | Update

. upload
project root(s) » Update
files to keep upload » Update

\4 \J

O

Thursday, May 16, 13

client server

"This is what | have..." start > Query, Delete,
Delete, Delete...
upload » Update
Control-C — [———#Ple*———_ryrqe
upload »| Update
\4 \4

O

Thursday, May 16, 13

client server

start
>
load
uploa >
load
uploa >
load
uploa >
\4 \4

O

Thursday, May 16, 13

O

client

server
start

>

load
uploa >

load
uploa .

upload
P >
commit >

\ 4 \ 4

Thursday, May 16, 13

O

client

"This is what | have..."

server
start »| Store
upload
P » Store
upload
P » Store
upload
» Store
commit »| Query, Update,
Delete, Update...

Thursday, May 16, 13

O

client

"This is what | have..."

server
start » Store
upload
» Store
upload
P » Store
upload
» Store
commit »| Commit
|
"> Query, Update,

\/

Delete, Update...

Thursday, May 16, 13

The Publishing Protocol

Start a new Change, with the given change description

Upload data for new and updated files in the change

Commit the change

Or Abort the change

- Cron job aborts stale Changes

O

19

Thursday, May 16, 13

Authenticated Web Services

* Google Cloud Endpoints

Server libs for Python and Java

Client libs for practically everything

Especially easy for mobile (Android, iOS) and rich web (JavaScript)

O

20

Thursday, May 16, 13

Google Cloud Endpoints: Server
API Definition: Messages

from protorpc import messages

class StartRequest(messages.Message):
project_prefixes = messages.StringField(1, repeated=True)
upload_paths = messages.StringField(2, repeated=True)

class StartResponse(messages.Message):
change_id = messages.IntegerField(1, required=True)

O

Thursday, May 16, 13

Google Cloud Endpoints: Server

» Messages can be defined as “ProtoRP(C’"s...

» ... or directly from ndb models, with Endpoints Proto Datastore

- http://endpoints-proto-datastore.appspot.com/

O

22

Thursday, May 16, 13

Google Cloud Endpoints: Server

API Definition: Service

from google.appengine.ext import endpoints
from protorpc import remote

@endpoints.api(
name="sitepublish’,
version="v1',
description='Site Publish API’,
allowed_client_ids=CLIENT_IDS)
class SitePublishApi(remote.Service):

...

O

Thursday, May 16, 13

Google Cloud Endpoints: Server
API Definition: Method

@endpoints.api(...)
class SitePublishApi(remote.Service):

@endpoints.method(
StartRequest,
StartResponse,
name='start’', path='start’)
def start(self, request):

...

O

Thursday, May 16, 13

Google Cloud Endpoints: Server

API Definition: Authorization

@endpoints.method(
StartRequest,
StartResponse,
name='start’', path='start’)

def start(self, request):

user = endpoints.get_current_user()

if user is None or user.email() not in CONTENT_DEVELOPERS:
raise endpoints.UnauthorizedException()

O

Thursday, May 16, 13

Google Cloud Endpoints: Server

API Definition: Request and Response

@endpoints.method(
StartRequest,
StartResponse,
name='start’', path='start’)

def start(self, request):
...

change = start_change(

request.project_prefixes,

request.upload_paths,

endpoints.get_current_user())
response = StartResponse(change_id=change.get_change_1d())
return response

O

Thursday, May 16, 13

Google Cloud Endpoints: Server

API Definition: Service

@endpoints.api(...)
class SitePublishApi(remote.Service):
...

app = endpoints.api_server([SitePublishApi], restricted=False)

O

Thursday, May 16, 13

Google Cloud Endpoints: Server

API Definition: Service

application: site-publish
version: 1

runtime: python27
api_version: 1
threadsafe: true

handlers:

- url: /_ah/spi/.*
script: services.app

O

Thursday, May 16, 13

Google Cloud Endpoints: Server

 Authenticated endpoints use client IDs
- user signs in to Google, client gets permission to act as user when calling service
* Manage client IDs with the Google APl Console

- https://developers.google.com/console/

O

29

Thursday, May 16, 13

Google Cloud Endpoints: Server

O

| Google APIs Console x % Y

€& > C B https://code.google.com/apis/console/b/0/#project: 145889693104 :access DR I N)

Search |mages Maps Play YouTube News Gmail Drive More v v | Settings v | Help | Sign out

Google apis

Site Publish v

Overview
Services
Team

API| Access

APl Access
To prevent abuse, Google places limits on AP| requests. Using a valid OAuth token or AP| key allows you
to exceed anonymous limits by connecting requests back to your project.

Authorized API Access

OAuth 2.0 allows users to share specific data with you (for example, contact lists) while keeping their
usemames, passwords, and other information private. A single project may contain up to 20 client 1Ds.
Leam more

Branding information
The following information is shown to users whenever you request access to their private data.

Product name: Site Publish Client
Google account: dan.sandersonfgmail.com
Home page URL: https://github.com/dansanderson/site-publish

Edit branding information...

Client ID for web applications

Client 1D: 145889693104-t0nmbog9vtB8gmrdkusl Edit settings...

aecm7d45stcgr.apps.googleusercon Reset client secret
tent.com

Download JSON
145889693104-t0nmbogd9vtB8anrdkusl
aecn’d45stcgrldeveloper.gsexvice Delete...

account.com Send Feedback

30

Thursday, May 16, 13

Google Cloud Endpoints: Server

* Create a project

» Under API Access, create a client
- “Web application,” even though this is a command-line tool
« For the new client, Edit settings...

- Authorized Redirect URIs:
nttp://localhost: 8080/

nttp://localhost: 8090/
nttp://your-site.com/

O

Thursday, May 16, 13

Google Cloud Endpoints: Server
Setting the client IDs

from google.appengine.ext import endpoints
from protorpc import remote

@endpoints.api(
name="sitepublish’,
version="v1',
description='Site Publish API’,
allowed_client_ids=CLIENT_IDS)
class SitePublishApi(remote.Service):

...

O

Thursday, May 16, 13

Google Cloud Endpoints: Server
Setting the client IDs

from google.appengine.ext import endpoints
from protorpc import remote

CLIENT_IDS = ['145889693104-t0nmb6og9vt8gmrdkusliaecm7d45stcgr.apps.googleusercontent.com’,
endpoints.API_EXPLORER_CLIENT_ID]

@endpoints.api(
name="sitepublish’,
version="v1',
description='Site Publish API’,
allowed_client_ids=CLIENT_IDS)
class SitePublishApi(remote.Service):

O

Thursday, May 16, 13

Google Cloud Endpoints: Server

* Try it out in the development server, no client code needed!

-http://localhost:8080/_ah/api/explorer

O

34

Thursday, May 16, 13

O

Demo

35

Thursday, May 16, 13

Google Cloud Endpoints: Server

(\ Google APIs Explorer x % Y

€& - C (@ https://developers.google.com/apis-explorer/?base=http://localh... 77 & 2 ®

GOOgle Search for services, methods, and recent requests...

APls Explorer

= Services - sitepublish API Site Publish API

i== All Versions

¥ Request History

O

Thursday, May 16, 13

36

Google Cloud Endpoints: Server

(\ Google APIs Explorer x % Y

€& - C (@ https://developers.google.com/apis-explorer/?base=http://localh... 77 & 2 ®

GOOgle Search for services, methods, and recent requests... “

APls Explorer Q-

Services
Services > sitepublish API vl Authorize requests using OAuth 2.0: BELH 1@

= All Versions sitepublish.abort

O Request History sitepublish.commit
sitepublish.start

sitepublish.upload

O

Thursday, May 16, 13

37

Google Cloud Endpoints: Server

()Google APIs Explorer

« - C \@https://developers.google.com/apis—explorerl?base=http://Iocalh... {3\ ’) ®

Select OAuth 2.0 scopes:

Scopes are used to grant an application different levels of access to data on
behalf of the end user. Each AP| may declare one or more scopes. Leam
more about OAuth 2.0

sitepublish API declares the following scopes. Select which ones you want to
grant to APIs Explorer.

@ https://www.googleapis.com/auth/userinfo.email
View your email address

Add additional scopes (optional):

|
m Cancel

O

Thursday, May 16, 13

38

O

(\ Google APIs Explorer

€& - C (@ https://developers.google.com/apis-explorer/?base=http://localhos... 57 & » ®

Google

APls Explorer

Services
i== All Versions

¥ Request History

Search for services, methods, and recent requests...

Services > sitepublish APl v1 > sitepublish.start

Authorize requests using OAuth 2.0: mo

Selector specifying which
fields fields to include in a partial
response.
Use fields editor

{
"project_prefixes":
[
" [foo/
]
Request body "upload_paths":
[
" [foo/bar.html

" /foo/haz.html

39

Thursday, May 16, 13

APls Explorer = o 2

i= Services
sitepublish.start executed moments ago time to execute: 849 ms

iz All Versions

Request
¥ Request History

POST http://localhost:8080/_ah/api/sitepublish/vl/start

Content-Type: application/json

Authorization: Bearer ya29.AHES6ZTvOeRuB8RrPZpTuU-
tyzAYtZUdnPYAjYcQ2ZNia4IEtL
X-JavaScript-User-Agent: Google APIs Explorer

—{
—"project_prefixes": [
I/fOO/I

1,
—"upload_paths": [

"/foo/bar.html",

"/foo/baz.html"

]
}

Response

“"change_id": 2

O

Thursday, May 16, 13

Google Cloud Endpoints: Client

google-api-python-client

- https://developers.google.com/api-client-library/

Client uses a “discovery document” that describes the service API

Looks like a language-native API to the client code

Library contains tools for making OAuth easy

O

41

Thursday, May 16, 13

https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/

Google Cloud Endpoints: Client

« Generate the discovery document for the service: endpointscfg.py

- ~/google_appengine/endpointscfg.py gen_discovery_doc \

-0 . -f rest --hostname=localhost:8080 \

services.SitePublishApi

« Make a one for testing, and one for real, using hostname parameter

- Hand-edit localhost version to replace “https” with “http”

O

42

Thursday, May 16, 13

Google Cloud Endpoints: Client

Loading the Discovery Document

import os
from apiclient import discovery

discovery_doc_fname = os.path.join(
os.path.dirname(__file__),
'SitePublishApi.discovery’)

discovery_doc = open(discovery_doc_fname).read()

site_publish_service = discovery.build_from_document(discovery_doc)

O

Thursday, May 16, 13

Google Cloud Endpoints: Client

Authenticating the User

import httplib?2
import oauth2client

storage = oauth2client.file.Storage(CREDENTIALS_FILENAME)
credentials = storage.get()

if credentials is None or credentials.invalid:
flow = oauth2client.client.OAuth2WebServerFlow(
client_id=CLIENT_ID,
client_secret=CLIENT_SECRET,
scope="https://www.googleapis.com/auth/userinfo.email’)
credentials = oauth2client.tools.run(flow, storage)

http = credentials.authorize(httplib2.Http())

O

Thursday, May 16, 13

Google Cloud Endpoints: Client

Calling the Service

request = site_publish_service.start(
body={
'project_prefixes': ['/foo/'],
'upload_paths': ['/foo/bar.html’, '/foo/baz.png’']1})
response = request.execute(http=http)

change_id = responsel['change_id']

O

Thursday, May 16, 13

O

Demo

46

Thursday, May 16, 13

Data Modeling with ndb

* Modeling changes

» Strict ordering of changes

- Datetimes?

- System IDs?

O

Change

key: ...

project_prefixes
upload_paths
created_by
IS_committed
is_aborted

47

Thursday, May 16, 13

Data Modeling with ndb

* |dea: Store the "next change ID,” update it transactionally when creating changes

» Singleton entity for the change ID

* Use a cross-group transaction

O

Change

key: ...

project_prefixes
upload_paths
created_by
IS_committed
is_aborted

48

Thursday, May 16, 13

Data Modeling with ndb

* |dea: Store the "next change ID,” update it transactionally when creating changes

» Singleton entity for the change ID

» Use a cross-group transaction (or just put all changes in the same entity group)

--

ChangeGroup Change
key: “single” key: “000001234"

next_id project_prefixes
upload_paths
created_by
IS_committed
is_aborted

O e e ;

Thursday, May 16, 13

Data Modeling with ndb

Change Model and ChangeGroup Singleton

from google.appengine.ext import ndb

class ChangeGroup(ndb.Model):
next_id = ndb.IntegerProperty(required=True)

class Change(ndb.Model):
upload_paths = ndb.StringProperty(repeated=True)
project_prefixes = ndb.StringProperty(repeated=True)
created_by = ndb.UserProperty()
is_committed = ndb.BooleanProperty(default=False)
is_aborted = ndb.BooleanProperty(default=False)

def get_change_id(self):
return int(self.key.string_id())

@classmethod
def get_key(cls, change_id):
return ndb.Key(ChangeGroup, '1', cls, "%012d" % change_id)

O

Thursday, May 16, 13

Data Modeling with ndb

* Modeling the content
- View request can access its data using a get () by key = URL path
- Publishing needs to be able to store new content separately from live content, then “switch”

* |dea: Path entity keyed by URL path, with pointer to Content entity

O

51

Thursday, May 16, 13

Data Modeling with ndb

* Modeling the content
- View request can access its data using a get () by key = URL path
- Publishing needs to be able to store new content separately from live content, then “switch”

* |dea: Path entity keyed by URL path, with pointer to Content entity

Path Content
key: URL path / key: ...
content_key content_type

data

O

Thursday, May 16, 13

Data Modeling with ndb

» Entity grouping for content objects?

* |dea: One group per Path, containing the Path and multiple Content objects

» Can set content_key and delete old Content entity in one transaction

Path Content

key: URL path / key: ...
content_type

content_key
data

O

Thursday, May 16, 13

Data Modeling with ndb

Path Content
key: URL path / key: [Path]:1234
content_key content_type

data

O

Thursday, May 16, 13

Data Modeling with ndb

O

Path Content

key: URL path / key: [Path]:1234

content_key content_type
data

Content
key: [Path]:1257

content_type
data

55

Thursday, May 16, 13

Data Modeling with ndb

Path
key: URL path 'iéé'y'"['ééih'j 1234 |

content_key content_type
. data

Content
key: [Path]:1257

content_type
data

O

Thursday, May 16, 13

Data Modeling with ndb

Path and Content Models

class Path(ndb.Model):
content_key = ndb.KeyProperty()
1s_deleted = ndb.BooleanProperty(default=False)
last_applied_change_id = ndb.IntegerProperty()

@classmethod
def get_key(cls, path):
return ndb.Key(cls, path)

class Content(ndb.Model):
data = ndb.BlobProperty()
content_type = ndb.StringProperty()

@classmethod

def get_key(cls, path, change_id):
return ndb.Key(Path, path, cls, str(change_id))

O

Thursday, May 16, 13

Applying a Change

Client calls the commit () method with the change ID

Server updates the Change record and initiates the "apply” task

Commit and apply task are stored transactionally

- |If either fails, neither occurs, and client sees the error

Apply task spawns more tasks to paint the changes onto the website

Any failed tasks get retried

O

58

Thursday, May 16, 13

Conflict Resolution

What happens when two changes are applied out of order?

Changes are ordered

Store the last change ID with the Path

Apply phase only “rolls forward”

Deletes leave “tombstones,” so later deletes stick
- p.1s_deleted = True, p.last_change_id = 1234

- can delete Content, but don't delete Paths

O

59

Thursday, May 16, 13

Conflict Resolution

Changes are ordered

Store the last change ID with the Path

Apply phase only “rolls forward”

Deletes leave “tombstones,” so later deletes stick
- p.1s_deleted = True, p.last_change_id = 1234

- can delete Content, but don't delete Paths

O

What happens when two changes are applied out of order?

Path

key: URL path

content_key=None
is_deleted=True
last_change_id=1234

60

Thursday, May 16, 13

Summary

CMS with remote transactional publishing, arbitrary change size, eventual consistency

Easy authenticated web services: Google Cloud Endpoints

Transactional data storage: Google Cloud Datastore

Data modeling: ndb for Python

Background tasks: App Engine Task Queue

Caching layer: Memcache, ndb

Large object storage: Google Cloud Storage

O

61

Thursday, May 16, 13

Thanks!

developers.google.com

github.com/dansanderson
/site-publish

ae-book.appspot.com

Dan Sanderson
Programming Google
App Engine, 2nd ed.

O

(\ Google
Developers

Build & Run Scalable Web Apps
on Google's Infrastruciure

Programming

Google App

T — T

62

Thursday, May 16, 13

Large Asset Support

 Blobstore / Google Cloud Storage
« Uploading:
- Client calls new endpoint for generating a Blobstore upload URL
- Client makes MIME muiltipart POST to that URL
- Server gets the Blobstore key, stores it in the Path
* Serving:
- Server gets the Blobstore key in Path instead of Content key

- Server puts Blobstore key in response, App Engine serves the file

O

63

Thursday, May 16, 13

Memcache

Avoid hitting the datastore twice for every view request

Use ndb to cache datastore entities automatically; just set a cache policy!

Per-entity caching vs. result caching

Don't forget etags and cache controls

O

64

Thursday, May 16, 13

Faster Uploads

Multi-threaded uploading

- Be sure to use a separate httplib2.Http() instance per thread.
Batched uploads in the upload API
Not-modified check at start time

Compressed payloads

O

65

Thursday, May 16, 13

